Complete Guide to datakraft API Integration
Step-by-step tutorial for integrating datakraft's document processing API into your existing workflows and applications.

Integrating AI-powered document processing into your existing applications and workflows can transform how your organization handles documents. This comprehensive guide walks through the entire process of integrating with datakraft's API, from initial setup to advanced implementation patterns.
API Overview and Architecture
The datakraft API is built on REST principles with JSON payloads, making it easy to integrate with any programming language or platform. The API provides several key endpoints:
- Document Upload: Submit documents for processing
- Processing Status: Check the status of document processing jobs
- Results Retrieval: Get processed data and extracted information
- Webhook Configuration: Set up real-time notifications
- Batch Operations: Process multiple documents efficiently
Getting Started: Authentication and Setup
API Key Authentication
All API requests require authentication using an API key. Include your API key in the Authorization header:
Authorization: Bearer YOUR_API_KEY
Base URL and Endpoints
All API requests are made to the base URL:
https://api.datakraft.com/v1/
Rate Limiting
The API implements rate limiting to ensure fair usage:
- Standard tier: 100 requests per minute
- Professional tier: 500 requests per minute
- Enterprise tier: Custom limits based on agreement
Basic Document Processing Workflow
Step 1: Upload Document
Submit a document for processing using the upload endpoint:
POST /documents/upload
Content-Type: multipart/form-data
{
"file": [binary file data],
"document_type": "invoice",
"processing_options": {
"extract_tables": true,
"ocr_language": "en",
"confidence_threshold": 0.95
}
}
Step 2: Check Processing Status
Monitor the processing status using the job ID returned from the upload:
GET /documents/{job_id}/status
Response:
{
"job_id": "12345",
"status": "processing",
"progress": 75,
"estimated_completion": "2024-01-15T10:30:00Z"
}
Step 3: Retrieve Results
Once processing is complete, retrieve the extracted data:
GET /documents/{job_id}/results
Response:
{
"job_id": "12345",
"status": "completed",
"extracted_data": {
"document_type": "invoice",
"confidence_score": 0.98,
"fields": {
"invoice_number": "INV-2024-001",
"date": "2024-01-15",
"total_amount": 1250.00,
"vendor_name": "Acme Corp",
"line_items": [
{
"description": "Professional Services",
"quantity": 10,
"unit_price": 125.00,
"total": 1250.00
}
]
},
"tables": [...],
"metadata": {
"pages": 1,
"processing_time": 2.3,
"file_size": 245760
}
}
}
Advanced Integration Patterns
Webhook Integration
For real-time processing notifications, configure webhooks to receive updates when documents are processed:
POST /webhooks/configure
{
"url": "https://your-app.com/webhook/datakraft",
"events": ["document.completed", "document.failed"],
"secret": "your_webhook_secret"
}
Your webhook endpoint will receive POST requests with processing updates:
{
"event": "document.completed",
"job_id": "12345",
"timestamp": "2024-01-15T10:30:00Z",
"data": {
"status": "completed",
"confidence_score": 0.98
}
}
Batch Processing
Process multiple documents efficiently using batch operations:
POST /documents/batch
{
"documents": [
{
"file_url": "https://your-storage.com/doc1.pdf",
"document_type": "invoice"
},
{
"file_url": "https://your-storage.com/doc2.pdf",
"document_type": "receipt"
}
],
"processing_options": {
"priority": "high",
"callback_url": "https://your-app.com/batch-complete"
}
}
Error Handling and Retry Logic
HTTP Status Codes
The API uses standard HTTP status codes:
- 200 OK: Request successful
- 202 Accepted: Document accepted for processing
- 400 Bad Request: Invalid request parameters
- 401 Unauthorized: Invalid or missing API key
- 429 Too Many Requests: Rate limit exceeded
- 500 Internal Server Error: Server error
Retry Strategy
Implement exponential backoff for handling temporary failures:
def retry_with_backoff(func, max_retries=3):
for attempt in range(max_retries):
try:
return func()
except requests.exceptions.RequestException as e:
if attempt == max_retries - 1:
raise e
wait_time = (2 ** attempt) + random.uniform(0, 1)
time.sleep(wait_time)
SDK and Client Libraries
Python SDK
pip install datakraft-python
from datakraft import DatakraftClient
client = DatakraftClient(api_key="your_api_key")
# Upload and process document
result = client.process_document(
file_path="invoice.pdf",
document_type="invoice",
wait_for_completion=True
)
print(result.extracted_data)
JavaScript/Node.js SDK
npm install datakraft-js
const { DatakraftClient } = require('datakraft-js');
const client = new DatakraftClient('your_api_key');
// Process document with async/await
async function processDocument() {
const result = await client.processDocument({
filePath: 'invoice.pdf',
documentType: 'invoice'
});
console.log(result.extractedData);
}
Integration Examples by Use Case
E-commerce Order Processing
Automatically process supplier invoices and update inventory systems:
// Webhook handler for completed invoice processing
app.post('/webhook/invoice-processed', (req, res) => {
const { job_id, data } = req.body;
if (data.status === 'completed') {
const invoice = data.extracted_data;
// Update inventory system
updateInventory({
supplier: invoice.fields.vendor_name,
items: invoice.fields.line_items,
total: invoice.fields.total_amount
});
// Create accounting entry
createAccountingEntry({
amount: invoice.fields.total_amount,
date: invoice.fields.date,
reference: invoice.fields.invoice_number
});
}
res.status(200).send('OK');
});
HR Document Management
Process employee onboarding documents and update HR systems:
async function processOnboardingDocuments(employeeId, documents) {
const results = [];
for (const doc of documents) {
const result = await client.processDocument({
filePath: doc.path,
documentType: doc.type,
processingOptions: {
extractTables: true,
confidenceThreshold: 0.95
}
});
// Update employee record based on document type
switch (doc.type) {
case 'tax_form':
await updateTaxInformation(employeeId, result.extractedData);
break;
case 'bank_details':
await updatePayrollInformation(employeeId, result.extractedData);
break;
case 'emergency_contact':
await updateEmergencyContacts(employeeId, result.extractedData);
break;
}
results.push(result);
}
return results;
}
Performance Optimization
Parallel Processing
Process multiple documents concurrently to improve throughput:
import asyncio
import aiohttp
async def process_documents_parallel(documents):
async with aiohttp.ClientSession() as session:
tasks = []
for doc in documents:
task = process_single_document(session, doc)
tasks.append(task)
results = await asyncio.gather(*tasks)
return results
async def process_single_document(session, document):
async with session.post(
'https://api.datakraft.com/v1/documents/upload',
headers={'Authorization': f'Bearer {API_KEY}'},
data={'file': document}
) as response:
return await response.json()
Caching Strategies
Implement caching to avoid reprocessing identical documents:
import hashlib
import redis
redis_client = redis.Redis(host='localhost', port=6379, db=0)
def get_document_hash(file_content):
return hashlib.sha256(file_content).hexdigest()
def process_with_cache(file_content, document_type):
doc_hash = get_document_hash(file_content)
cache_key = f"doc:{doc_hash}:{document_type}"
# Check cache first
cached_result = redis_client.get(cache_key)
if cached_result:
return json.loads(cached_result)
# Process document if not in cache
result = client.process_document(file_content, document_type)
# Cache result for 24 hours
redis_client.setex(cache_key, 86400, json.dumps(result))
return result
Monitoring and Analytics
Usage Tracking
Monitor API usage and performance:
GET /analytics/usage?start_date=2024-01-01&end_date=2024-01-31
Response:
{
"period": {
"start": "2024-01-01",
"end": "2024-01-31"
},
"metrics": {
"total_documents": 15420,
"successful_processing": 15180,
"failed_processing": 240,
"average_processing_time": 2.3,
"api_calls": 18650,
"data_processed_gb": 45.2
},
"top_document_types": [
{"type": "invoice", "count": 8920},
{"type": "receipt", "count": 3240},
{"type": "contract", "count": 2180}
]
}
Error Monitoring
Track and analyze processing errors:
GET /analytics/errors?start_date=2024-01-01&end_date=2024-01-31
Response:
{
"error_summary": {
"total_errors": 240,
"error_rate": 1.56
},
"error_types": [
{
"type": "low_quality_image",
"count": 120,
"percentage": 50.0
},
{
"type": "unsupported_format",
"count": 80,
"percentage": 33.3
},
{
"type": "processing_timeout",
"count": 40,
"percentage": 16.7
}
]
}
Security Best Practices
API Key Management
- Store API keys securely using environment variables or secret management systems
- Rotate API keys regularly
- Use different API keys for different environments (dev, staging, production)
- Monitor API key usage for suspicious activity
Data Protection
- Use HTTPS for all API communications
- Implement request signing for additional security
- Validate webhook signatures to ensure authenticity
- Sanitize and validate all input data
Testing and Development
Sandbox Environment
Use the sandbox environment for development and testing:
Base URL: https://sandbox-api.datakraft.com/v1/
API Key: Use sandbox-specific API keys
Unit Testing
Mock API responses for reliable unit testing:
import unittest
from unittest.mock import patch, Mock
class TestDatakraftIntegration(unittest.TestCase):
@patch('requests.post')
def test_document_upload(self, mock_post):
mock_response = Mock()
mock_response.json.return_value = {
'job_id': '12345',
'status': 'accepted'
}
mock_response.status_code = 202
mock_post.return_value = mock_response
result = upload_document('test.pdf', 'invoice')
self.assertEqual(result['job_id'], '12345')
self.assertEqual(result['status'], 'accepted')
Troubleshooting Common Issues
Document Quality Issues
- Low OCR accuracy: Ensure documents are high resolution (300+ DPI)
- Poor table extraction: Use documents with clear table borders
- Missing text: Check for sufficient contrast between text and background
API Integration Issues
- Timeout errors: Implement proper retry logic with exponential backoff
- Rate limiting: Implement request queuing and respect rate limits
- Authentication failures: Verify API key validity and permissions
Migration and Deployment
Production Deployment Checklist
- ✅ API keys configured in production environment
- ✅ Webhook endpoints secured and tested
- ✅ Error handling and retry logic implemented
- ✅ Monitoring and alerting configured
- ✅ Rate limiting and throttling implemented
- ✅ Security review completed
- ✅ Performance testing completed
- ✅ Backup and recovery procedures documented
Support and Resources
Getting Help
- API Documentation: https://docs.datakraft.com
- Developer Support: support@datakraft.com
- Community Forum: https://community.datakraft.com
- Status Page: https://status.datakraft.com
Additional Resources
- Sample code repositories on GitHub
- Postman collection for API testing
- Video tutorials and webinars
- Integration templates for popular platforms
This comprehensive guide provides the foundation for successfully integrating datakraft's document processing capabilities into your applications. Start with basic document upload and processing, then gradually implement more advanced features like webhooks, batch processing, and performance optimizations as your needs grow.
Technical Disclaimer: This guide provides general integration patterns and examples for illustrative purposes. Specific implementation details may vary based on your technology stack and requirements. Always refer to the latest API documentation for the most current information.
datakraft Team
Expert in AI-powered document processing and enterprise automation solutions. Passionate about helping organizations transform their document workflows through intelligent technology.